Received 5 October 2004 Accepted 24 November 2004

Online 30 November 2004

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bohari M. Yamin* and Ibrahim N. Hassan

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail: bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.003 Å R factor = 0.053 wR factor = 0.131 Data-to-parameter ratio = 16.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-(2-Morpholinoethyl)-3-(3-phenylacryloyl)thiourea

The title compound, $C_{16}H_{21}N_3O_2S$, is a thiourea derivative with cinnamoyl and 2-morpholinoethyl groups attached at the terminal two N atoms. The groups lie *trans* and *cis*, respectively, to the S atom across the thiourea C–N bonds and the morpholine group adopts a chair conformation. The molecules are linked by N–H···O hydrogen bonds, forming an infinite one-dimensional chain along the *b* axis.

Comment

Most carbonylthiourea derivatives of the type $R^{1}C(O)NHC(S)NHR^{2}$ have a *trans-cis* configuration with respect to the position of the $R^1C(O)$ and R^2 groups across the thiourea C-N bonds, respectively, such as in N-benzoyl-N'phenylthiourea (Yamin & Yusof, 2003a), N-benzoyl-N'(pbromophenyl)thiourea (Yamin & Yusof, 2003b) and Nbenzoyl-N'-(2-chlorophenyl)thiourea (Yusof & Yamin, 2004). Similarly, in the title compound, (I), the cinnamoyl and 2morpholinoethyl groups are trans and cis, respectively, to the S atom across the thiourea C-N bonds (Fig. 1 and Table 1). The morpholine group adopts a chair conformation. The bond lengths and angles are in normal ranges (Allen et al., 1987) and in agreement with other thiourea derivatives. The C7-C8 bond [1.311 (3) Å] has double-bond character, with a trans configuration with respect to the H atoms at both C atoms.

The maximum deviation from the plane of the central fragment (S1/O1/N1/N2/C7/C8/C9/C10) is 0.049 (2) Å for atom O1. The dihedral angle between this plane and and the phenyl group (C1–C6) is 22.39 (9)°. Three intramolecular hydrogen bonds, *viz.* N2–H2A···O1, N2–H2A···N3 and C7–H7···O1, are observed (Fig. 1 and Table 2). As a result, two pseudo-five-membered (C7–C8–C9–O1···H and N3–C12–C11–N2–H2A) and one pseudo-six-membered (C9–N1–C10–N2–H2A···O1) rings are formed. In the crystal structure, the molecule is stabilized by intermolecular N1–H1A···O2ⁱ [symmetry code: (i) x, 1 + y, z; Table 2] hydrogen bonds, forming one-dimensional chains extending along the b axis (Fig. 2).

Experimental

Ammonium thiocyanate (0.761 g, 10 mmol) was added to an acetone solution (20 ml) containing cinnamoyl chloride (1.666 g, 10 mmol). After stirring for 15 min, a solution (10 ml) of 2-morpholinoethyl-

Printed in Great Britain – all rights reserved Acta Cryst. (2004). E60, o2513–o2514

© 2004 International Union of Crystallography

amine (1.301 g, 10 mmol) was added. The resulting solution was then refluxed for 1 h. After cooling, the solution was poured into a beaker containing some ice. The white precipitate was filtered off and washed with distilled water several times and then dried under vacuum (yield, 69%). Crystals were obtained from acetone; the melting point was 452.5 K.

Z = 2

 $D_{\rm r} = 1.270 {\rm Mg} {\rm m}^{-3}$

Cell parameters from 775

Mo $K\alpha$ radiation

reflections

 $\theta = 1.4-26.0^{\circ}$ $\mu = 0.20 \text{ mm}^{-1}$

T = 273 (2) K

Block, colourless $0.41 \times 0.34 \times 0.20 \text{ mm}$

Crystal data

 $\begin{array}{l} C_{16}H_{21}N_{3}O_{2}S\\ M_{r}=319.42\\ \text{Triclinic, }P\overline{1}\\ a=6.1452\ (14)\ \text{\AA}\\ b=9.731\ (2)\ \text{\AA}\\ c=14.690\ (3)\ \text{\AA}\\ \alpha=98.711\ (4)^{\circ}\\ \beta=93.971\ (4)^{\circ}\\ \gamma=104.444\ (4)^{\circ}\\ V=835.6\ (3)\ \text{\AA}^{3} \end{array}$

Data collection

3267 independent reflections
2748 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.019$
$\theta_{\rm max} = 26.0^{\circ}$
$h = -7 \rightarrow 7$
$k = -12 \rightarrow 12$
$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0564P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.053$	+ 0.1504P]
$wR(F^2) = 0.131$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.15	$(\Delta/\sigma)_{\rm max} < 0.001$
3267 reflections	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
199 parameters	$\Delta \rho_{\rm min} = -0.15 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

S1-C10	1.6675 (19)	N2-C10	1.314 (3)
O1-C9	1.219 (2)	N2-C11	1.449 (3)
O2-C15	1.425 (3)	N3-C16	1.450 (3)
O2-C14	1.426 (3)	N3-C13	1.453 (3)
N1-C9	1.377 (2)	N3-C12	1.460 (3)
N1-C10	1.389 (3)	C7-C8	1.311 (3)
C9-N1-C10	128.18 (17)	N2-C10-N1	116.43 (17)
C10-N2-C11	124.72 (17)		

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2A\cdots O1$	0.86	1.95	2.642 (3)	136
$N2-H2A\cdots N3$	0.86	2.39	2.758 (2)	107
$C7-H7\cdots O1$	0.93	2.48	2.813 (3)	101
$N1-H1A\cdots O2^{i}$	0.86	2.27	3.114 (2)	169

Symmetry code: (i) x, 1 + y, z.

After their location in a difference map, all H atoms were positioned geometrically and allowed to ride on their parent atoms, with C-H = 0.93-0.97 Å and N-H = 0.86 Å, and $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.2U_{eq}(N)$.

Figure 1

The molecular structure of the title compound, (I), with 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2003).

The authors thank the Malaysian Government and both Universiti Malaya and Kebangsaan Malaysia for the research grant IRPA No. 09-02-02-0163.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Yamin, B. M. & Yusof, M. S. M. (2003a). Acta Cryst. E59, o151-o152.
- Yamin, B. M. & Yusof, M. S. M. (2003b). Acta Cryst. E59, 0340-0341.
- Yusof, M. S. M. & Yamin, B. M. (2004). Acta Cryst. E60, o1403-o1404.